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Abstract
The analytical properties of the lattice Green function

G(n, n, n;w) = 1

π3

∫ π

0

∫ π

0

∫ π

0

cos nθ1 cos nθ2 cos nθ3

w − cos θ1 − cos θ2 − cos θ3
dθ1 dθ2 dθ3

are investigated, where n is an integer and w is a complex variable. In particular,
it is demonstrated that G(n, n, n;w) is a solution of a fourth-order linear
differential equation of the Fuchsian type. From this differential equation it is
found that G(n, n, n;w) can be evaluated in terms of a product of two Heun
functions {Hj(n, v) : j = 1, 2}, where

v ≡ v(w) = 1

w2

(
1 +

√
1 − 1

w2

)−1 (
1 +

√
1 − 9

w2

)−1

.

A detailed discussion of the properties of {Hj(n, v) : j = 1, 2} is then
given. The Heun function results are used to prove that the product form
for G(n, n, n;w) can be expressed in terms of complete elliptic integrals of the
first and second kinds. It is also shown that G(n, n, n;w) can be written in the
hypergeometric form

wG(n, n, n;w) = (3n)!

(3nn!)3

[
w

3

(
1 −
√

1 − 9

w2

)]3n

2F1

(
1

3
,

2

3
; n + 1; η+

)
× 2F1

(
1

3
,

2

3
; n + 1; η−

)
where

η± ≡ η±(w) = 1

8w2

[
4w2 + (9 − 4w2)

√
1 − 9

w2
± 27

√
1 − 1

w2

]
.

This formula is valid for varying values of w in the neighbourhood of w = ∞,
provided that the argument function η+(w) does not take real values in the
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interval (1, +∞). Finally, this 2F1 product form is used to determine the
asymptotic behaviour of G(n, n, n;w) as n → ∞.

PACS numbers: 02.30.Gp, 05.50.+q

1. Introduction

The simple cubic lattice Green function

G(�,m, n;w) = 1

π3

∫ π

0

∫ π

0

∫ π

0

cos �θ1 cos mθ2 cos nθ3

w − cos θ1 − cos θ2 − cos θ3
dθ1 dθ2 dθ3 (1.1)

where {�,m, n} is a set of integers and w = w1 + iw2 is a complex variable, defines a single-
valued analytic function in a (w1, w2) plane which is cut along the real axis from w = −3
to w = +3. The set of points in this cut plane will be denoted by C−. We shall also
assume, without loss of generality, that � � m � n � 0. It is readily found from (1.1) that
G(�,m, n;w) satisfies the symmetry relation

G(�,m, n;−w) = (−1)�+m+n+1G(�,m, n;w). (1.2)

We see, therefore, that it is only strictly necessary to analyse the properties of (1.1) for points
w ∈ C− which have Re(w) � 0.

The function (1.1) plays an important role in many lattice statistical models which
involve the simple cubic lattice with isotropic nearest-neighbour interactions (Berlin and Kac
1952, Duffin 1953, Maradudin et al 1960, Montroll and Weiss 1965, Joyce 1972, Kobelev
and Kolomeisky 2002). For applications in solid-state physics one often requires the limiting
behaviour of G(�,m, n;w) as w approaches the upper and lower edges of the cut in the
(w1, w2) plane (see Wolfram and Callaway 1963, Katsura et al 1971). It is convenient,
therefore, to introduce the definitions

G±(�,m, n;w1) ≡ lim
ε→0+

G(�,m, n;w1 ± iε) ≡ GR(�,m, n;w1) ∓ iGI(�,m, n;w1) (1.3)

where −3 < w1 < 3. When |w1| � 3 the imaginary part of G±(�,m, n;w1) is always equal
to zero.

A simple integral representation for (1.3) can be derived by first applying the formula

∓i
∫ ∞

0
exp[±i(λ ± iε)t]dt = (λ ± iε)−1 (1.4)

to the denominator of the integrand in (1.1) with w = w1 ± iε, where λ is real and ε > 0. The
resulting multiple integral can then be simplified using the standard result

1

π

∫ π

0
cos(nθ) exp(it cos θ) dθ = inJn(t) (1.5)

where Jn(t) denotes a Bessel function of the first kind of order n. Hence, we find (Wolfram
and Callaway 1963)

G±(�,m, n;w1) = (∓i)�+m+n+1
∫ ∞

0
exp(±iw1t)J�(t)Jm(t)Jn(t) dt (1.6)

where −3 < w1 < 3. When � + m + n is an even integer it follows from (1.3) and (1.6) that

GR(�,m, n;w1) = (−1)(�+m+n)/2
∫ ∞

0
sin(w1t)J�(t)Jm(t)Jn(t) dt (1.7)
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GI(�,m, n;w1) = (−1)(�+m+n)/2
∫ ∞

0
cos(w1t)J�(t)Jm(t)Jn(t) dt. (1.8)

Similar formulae can also be obtained when � + m + n is an odd integer.
Recently, it has been shown by Joyce (2002) that G(�,m, n;w) can be evaluated at a

general lattice point {�,m, n} in terms of complete elliptic integrals which only involve a
single modulus k. In particular, it was found that the modified Green function

G(�,m, n;w) ≡ (3/w)�+m+nwG(�,m, n;w) (1.9)

can be expressed in the ξ parametric form

G(�,m, n;w) = R0(�,m, n; ξ) + R1(�,m, n; ξ)

[
2

π
K(k)

]2

+ R2(�,m, n; ξ)

[
2

π
K(k)

] [
2

π
E(k)

]
+ R3(�,m, n; ξ)

[
2

π
E(k)

]2

(1.10)

where K(k) and E(k) are complete elliptic integrals of the first and second kind respectively,
with a modulus

k ≡ k(ξ) = 4ξ 3/2

(1 − ξ)3/2(1 + 3ξ)1/2
. (1.11)

The connection between the parameter ξ and the variable w is given by

ξ ≡ ξ(w) = 1

w

(
1 +

√
1 − 1

w2

)−1/2 (
1 +

√
1 − 9

w2

)−1/2

(1.12)

and {Rj(�,m, n; ξ) : j = 0, 1, 2, 3} is a set of rational functions of ξ which can be obtained
using recursion relations derived by Morita (1975). The formula (1.10) enables one to
determine the value of G(�,m, n;w) at any point w in the cut plane C−.

It was also noted by Joyce (2002) that the formula (1.10) for the Green functions
{G(n, n, n;w) : n = 1, 2, 3, 4} and {G(2n, n, n;w) : n = 1, 2, 3, 4} could be factorized
as a product of two linear forms in K(k) and E(k) whose coefficients are polynomials in the
parameter ξ . For example, one finds that

G(1, 1, 1;w) = 81(1 + 3ξ)

8(1 − 9ξ 4)2

(
2

π

)2 [
(1 + ξ)2(1 − 3ξ)K(k) − (1 − ξ)(1 + 3ξ 2)E(k)

]
× [(1 + ξ)(1 − 3ξ)(1 + ξ 2)K(k) − (1 − ξ)2(1 − 3ξ 2)E(k)

]
(1.13)

and

G(2, 1, 1;w) = 81(1 − ξ)(1 + 3ξ)

4(1 − 9ξ 4)3

(
2

π

)2 [
(1 + ξ)3(1 − 3ξ)K(k) − (1 − 6ξ 2 − 3ξ 4)E(k)

]
× [(1 + ξ)(1 − 3ξ)(1 + 3ξ 2)2K(k) − (1 − ξ)2(1 + 18ξ 2 − 27ξ 4)E(k)

]
.

(1.14)

On the basis of these explicit formulae and similar results for n = 2, 3, 4 it was conjectured
that the factorization property for G(n, n, n;w) and G(2n, n, n;w) is valid for all integer
values of n.

Our main aim in paper I is to investigate the analytic properties of the diagonal lattice
Green function G(n, n, n;w). In particular, it will be proved in section 2 that G(n, n, n;w)

is a solution of a fourth-order differential equation of the Fuchsian type. In section 3 we shall
use this differential equation to show that G(n, n, n;w) can be written in terms of a product
of two Heun functions {Hj(n, v) : j = 1, 2}, where

v ≡ v(w) = ξ 2(w) (1.15)
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and ξ(w) is defined in (1.12). The properties of {Hj(n, v) : j = 1, 2} are discussed in
sections 4–6. In section 7 we shall use the Heun function results to prove the factorization
conjecture for G(n, n, n;w) which was proposed by Joyce (2002). Finally, the asymptotic
behaviour of G(n, n, n;w) as n → ∞ will be established in section 8.

Similar methods have also been used to prove the factorization conjecture (Joyce 2002)
for G(2n, n, n;w). These results will be given in paper II.

2. Basic results for G(n, n, n; w)

In this section we shall establish a fourth-order differential equation for the diagonal Green
function G(n, n, n;w).

2.1. Series expansion for G(n , n, n; w) about w = ∞
We begin by applying the formula

α−1 =
∫ ∞

0
exp(−αt) dt (2.1)

where Re(α) > 0, to the integrand denominator in (1.1). The resulting multiple integral can
then be simplified using the standard result

1

π

∫ π

0
cos(nθ) exp(t cos θ) dθ = In(t) (2.2)

where In(t) denotes a modified Bessel function of the first kind. In this manner, we find that

G(n, n, n;w) =
∫ ∞

0
exp(−wt) [In(t)]

3 dt (2.3)

where Re(w) � 3.
Next we consider the Taylor series expansion

[In(t)]
3 = t3n

(2nn!)3

∞∑
m=0

am(n)

(
t

2

)2m

(2.4)

where |t | < ∞ and a0(n) = 1. Formulae for the coefficients {am(n) : m = 0, 1, 2, . . .} in
(2.4) can be determined using the generating function identity

[0F1(−; n + 1; x)]3 ≡
∞∑

m=0

am(n)xm (2.5)

where 0F1 denotes a generalized hypergeometric series.
We now substitute (2.4) in the integral representation (2.3). This procedure yields the

required series expansion

G(n, n, n;w) = (3n)!

(2nn!)3

1

w3n+1

∞∑
m=0

µm(n)

w2m
(2.6)

where |w| � 3 and

µm(n) = (3n + 2m)!

22m(3n)!
am(n). (2.7)

From the work of Jorna (1975) it can also be shown that

µm(n) = (3n + 2m)!

22m(3n)!(n + 1)mm!
3F2

 −m, −m − n, n + 1
2 ;

4
n + 1, 2n + 1;

 (2.8)

where (n+1)m denotes a Pochhammer symbol and 3F2 is a generalized hypergeometric series.
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2.2. Differential equation for [In(t)]3 and a recursion relation for am(n)

Appell (1880) has shown that if ϕ(t) is a solution of the second-order differential equation

d2ϕ

dt2
+ f (t)

dϕ

dt
+ g(t)ϕ = 0 (2.9)

then the function 
(t) = [ϕ(t)]3 is a solution of the fourth-order differential equation

d4


dt4
+ 6f (t)

d3


dt3
+

{
11[f (t)]2 + 10g(t) + 4

df

dt

}
d2


dt2

+

{
6[f (t)]3 + 30f (t)g(t) + 7f (t)

df

dt
+ 10

dg

dt
+

d2f

dt2

}
d


dt

+ 3

{
6[f (t)]2g(t) + 3[g(t)]2 + 2g(t)

df

dt
+ 5f (t)

dg

dt
+

d2g

dt2

}

 = 0. (2.10)

If this result is applied to the function ϕ(t) = In(t) it is found that

f (t) = 1

t
(2.11)

g(t) = −
(

1 +
n2

t2

)
. (2.12)

It readily follows from (2.10)–(2.12) that 
(t) = [In(t)]3 is a solution of the differential
equation

t4 d4


dt4
+ 6t3 d3


dt3
+ t2
[
(7 − 10n2) − 10t2

]d2


dt2
+ t
[
(1 − 10n2) − 30t2

]d


dt

+ 3
[
3n4 − 2(2 − 3n2)t2 + 3t4

]

 = 0. (2.13)

We can now derive a recursion relation for the coefficients {am(n) : m = 0, 1, 2, . . .} by
substituting the expansion (2.4) in (2.13). The final result is

(m + 1)(m + n + 1)(m + 2n + 1)(m + 3n + 1)am+1(n)

− [3(2n + 1)(3n + 1) + 10(3n + 1)m + 10m2
]
am(n) + 9am−1(n) = 0 (2.14)

where m = 0, 1, 2, . . . , with the initial conditions a0(n) = 1 and a−1(n) = 0.

2.3. Recursion relation for µm(n) and a differential equation for G(n, n, n;w)

If the formula (2.7) is substituted in (2.14) we find that {µm(n) : m = 0, 1, 2, . . .} satisfy the
three-term recursion relation

16(m + 1)(m + n + 1)(m + 2n + 1)(m + 3n + 1)µm+1(n) − 4(2m + 3n + 1)(2m + 3n + 2)

× [3(2n + 1)(3n + 1) + 10(3n + 1)m + 10m2
]
µm(n)

+ 9(2m + 3n − 1)(2m + 3n)(2m + 3n + 1)(2m + 3n + 2)µm−1(n) = 0 (2.15)

where m = 0, 1, 2, . . . , with the initial conditions µ0(n) = 1 and µ−1(n) = 0. From (2.15)
and the expansion (2.6) we deduce that G(n, n, n;w) is a solution of the fourth-order Fuchsian
differential equation

(w2 − 1)(w2 − 9)
d4G

dw4
+ 10w(w2 − 5)

d3G

dw3
− [5(2n2 − 5)w2 − 6(3n2 − 7)

]d2G

dw2

− 15(2n2 − 1)w
dG

dw
+ (n2 − 1)(9n2 − 1)G = 0 (2.16)
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where n = 0, 1, 2, . . . . For the special case n = 0 the recursion relation (2.15) has a common
factor of m + 1 and it follows that G(0, 0, 0;w) is also a solution of the third-order differential
equation

(w2 − 1)(w2 − 9)
d3G

dw3
+ 6w(w2 − 5)

d2G

dw2
+ (7w2 − 12)

dG

dw
+ wG = 0. (2.17)

This result was first derived by Joyce (1973).
Finally, we shall find that it is useful to apply the transformation z = 1/w2 to (2.16). In

this manner we obtain the alternative differential equation

L4,n(G) = 0 (2.18)

where the differential operator

L4,n = 16z4(z − 1)(9z − 1)D4
z + 16z3(81z2 − 65z + 4)D3

z

+ 4z2
[
675z2 + 18z(n2 − 19) − 10(n2 − 1)

]
D2

z

+ 36z2
[
30z + (3n2 − 7)

]
Dz + (n2 − 1)(9n2 − 1) (2.19)

and Dz = d/dz.

3. Analysis of the differential equation L4,n(G) = 0

Our main aim in this section is to investigate the properties the differential equation (2.18). In
particular, we shall show that the general solution of L4,n(G) = 0 can be expressed in terms
of products of solutions of two second-order Heun differential equations. It follows from this
result that G(n, n, n;w) can be written in terms of a product of two Heun functions.

3.1. Singularity structure of the differential equation (2.18)

The basic differential equation (2.18) is of the Fuchsian type with four regular singular points
at z = 0, 1

9 , 1 and ∞. The Riemann P-symbol (see Ince (1927), p 370) associated with
equation (2.18) is given by

P



0 1
9 1 ∞

1
2 (1 + 3n) 0 0 0
1
2 (1 − 3n) 1 1 1 z

1
2 (1 + n) 2 2 1

2
1
2 (1 − n) 1

2
1
2

3
2


. (3.1)

In this scheme, the singular points are placed on the first row with the roots of the corresponding
indicial equations beneath them. For an arbitrary Nth order Fuchsian equation with ν regular
singular points in the finite z plane and a regular singular point at z = ∞, it can be shown (Ince
(1927), p 371) that the sum of all the exponents in the Riemannian scheme is an invariant
equal to 1

2N(N − 1)(ν − 1). We see directly from (3.1) that the differential equation (2.18)
has the correct Fuchsian invariant of 12.

It is clear from (3.1) that the expansion (2.6) with z = 1/w2 will give a series solution
of (2.18) which is associated with the exponent 1

2 (1 + 3n) at z = 0. Surprisingly, the series
solution about z = 0 which is associated with the exponent 1

2 (1 − n) terminates after a finite
number of terms and we obtain a simple algebraic solution of the type

G ≡ G(a)(n, z) = z
1
2 (1−n)

[ 1
2 (n−1)]∑
m=0

gm(n)zm (3.2)
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where
[

1
2 (n − 1)

]
denotes the largest integer less than or equal to 1

2 (n − 1), g0(n) = 1 and
n = 1, 2, . . . . When n � 3 the higher-order coefficients {gm(n) : m = 1, 2, . . .} in (3.2) can
be generated using the three-term recursion relation

16(m + 1)(m + n + 1)(m − n + 1)(m − 2n + 1)gm+1(n) − 4(2m − n + 1)(2m − n + 2)

× [(3 + n)(1 − 2n) + 10(1 − n)m + 10m2
]
gm(n)

+ 9(2m − n − 1)(2m − n)(2m − n + 1)(2m − n + 2)gm−1(n) = 0 (3.3)

where m = 0, 1, 2, . . . ,
[

1
2 (n − 1)

]− 1, with the initial conditions g0(n) = 1 and g−1(n) = 0.

3.2. Reduction of the order of L4,n(G) = 0 for n > 0

If the series expansion (2.6) is substituted into a general third-order differential equation with
polynomial coefficients we find by computer fitting that G(n, n, n;w) is also a solution of a
differential equation of the type

L3,n(G) = 0 (3.4)

where the differential operator

L3,n = z3(z − 1)(9z − 1)A3(n, z)D3
z + z2A2(n, z)D2

z + zA1(n, z)Dz + A0(n, z) (3.5)

Dz = d/dz and n = 1, 2, . . . . In this formula {Aj(n, z) : j = 0, 1, 2, 3} are polynomials in
z of degree

[
1
2 (n + 1)

]
,
[

1
2 (n + 4)

]
,
[

1
2 (n + 4)

]
and
[

1
2n
]

respectively. For the particular case
n = 4 it is found that

A0(4, z) = −2145(24 − 56z + 29z2) (3.6)

A1(4, z) = −6(5720 − 10 520z − 1007z2 + 7702z3 − 1044z4) (3.7)

A2(4, z) = 12(280 − 4280z + 9189z2 − 6124z3 + 783z4) (3.8)

A3(4, z) = 8(120 − 168z + 29z2). (3.9)

We see that a major disadvantage of the reduced equation (3.4) is that it becomes increasingly
more complicated as n increases. It should be noted that all the zeros of the polynomial
A3(n, z) are apparent singularities of the reduced differential equation (see Ince (1927),
p 406).

The connection between (3.4) and the fourth-order differential equation (2.18) can be
established by acting on L3,n(G) = 0 with the operator

L1,n = 8[2zDz − (n + 1)]. (3.10)

We find that

L1,nL3,n(G) = A3(n, z)L4,n(G) = 0 (3.11)

where n = 1, 2, . . . . The possibility of reducing the order of L4,n(G) = 0 for n > 0 appears
to be related to the existence of the algebraic solution (3.2).

3.3. Product solutions for the differential equation (2.18)

It can be proved by following a method recently described by Delves and Joyce (2001,
pp 81–4) that any solution of the differential equation L4,n(G) = 0 can be expressed in the
product form

G(z) = z−1/2(1 − z)−1/2(1 − 9z)−1/2Y1(n, z)Y2(n, z) (3.12)
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where Y1(n, z) and Y2(n, z) are appropriate solutions of the second-order differential equations[
D2

z + U+(n, z)
]
Y = 0 (3.13)

and [
D2

z + U−(n, z)
]
Y = 0 (3.14)

respectively. The coefficients U±(n, z) in these equations are given by

U±(n, z) = (2 − 5n2)

8z2
+

(14 − 41n2)

8z
+

3

16(1 − z)2
+

(35 − 8n2)

128(1 − z)

+
243

16(1 − 9z)2
+

243(7 − 24n2)

128(1 − 9z)
± 3n2

8z2
√

(1 − z)(1 − 9z)
. (3.15)

It is seen that the functions U±(n, z) involve the two branches of an algebraic function f (z)

which is defined by the polynomial equation

ψ(f, z) ≡ f 2 − (1 − z)(1 − 9z) = 0. (3.16)

Next we shall carry out a direct verification of the crucial results (3.13)–(3.15). In the first
stage of the analysis we note that, if Y1(n, z) and Y2(n, z) are solutions of (3.13) and (3.14)
respectively, then the product Y1(n, z)Y2(n, z) is a solution of the fourth-order differential
equation (Orr (1900), Watson (1944), p 146)

Dz

[
D3

zY + 2(U+ + U−)DzY + YDz(U+ + U−)

(U+ − U−)

]
+ (U+ − U−)Y = 0 (3.17)

where Dz = d/dz, U± = U±(n, z) and U+ �= U−. We now use the particular formula (3.15)
to evaluate and simplify the general equation (3.17). Finally, the transformation

Y = z1/2(1 − z)1/2(1 − 9z)1/2G (3.18)

is applied to the dependent variable in the differential equation. In this manner, we obtain the
expected equation L4,n(G) = 0.

3.4. Transformation of (3.13) and (3.14) to Heun differential equations

The set of points {(f, z) : ψ(f, z) = 0} defines a complex curve which has a genus g = 0. It
follows, therefore, that we can represent f and z as single-valued rational functions of a new
parameter v. In particular, we find that

z = 4v(1 − v)(1 − 9v)

(1 − 9v2)2
(3.19)

f = (1 − 2v + 9v2)(1 − 18v + 9v2)

(1 − 9v2)2
(3.20)

are suitable representations. If (3.19) is used to transform the independent variable in (3.13)
and (3.14) from z to v then it is found that Y1(n, v) and Y2(n, v) satisfy rather complicated
differential equations of the type[

D2
v + p+(n, v)Dv + q+(n, v)

]
Y1(n, v) = 0 (3.21)

and [
D2

v + p−(n, v)Dv + q−(n, v)
]
Y2(n, v) = 0 (3.22)

respectively, where p±(n, v) and q±(n, v) are rational functions of v, and Dv = d/dv.
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We can simplify (3.21) and reduce it to a standard form by applying the further
transformation

Y1(n, v) = v(n+1)/2(1 − v)(1−2n)/2(1 − 9v)(1−2n)/2(1 − 9v2)−3/2

× (1 − 2v + 9v2)1/2(1 − 18v + 9v2)1/2y1(n, v). (3.23)

In this manner, we deduce that y1(n, v) is a solution of the Heun differential equation (Snow
1952, Ronveaux 1995)

d2y

dv2
+

(
n + 1

v
+

1 − 2n

v − 1
+

1 − 2n

v − 1
9

)
dy

dv
+

(2n − 1)
[
(n − 1)v + 1

9 (n + 3)
]

v(v − 1)
(
v − 1

9

) y = 0. (3.24)

The application of the transformation

Y2(n, v) = v(2n+1)/2(1 − v)(1−n)/2(1 − 9v)(1−n)/2(1 − 9v2)−3/2

×(1 − 2v + 9v2)1/2(1 − 18v + 9v2)1/2y2(n, v) (3.25)

to (3.22) enables one to show that y2(n, v) is a solution of another Heun equation

d2y

dv2
+

(
2n + 1

v
+

1 − n

v − 1
+

1 − n

v − 1
9

)
dy

dv
+

[
(1 − n2)v + 1

9 (n − 3)(2n + 1)
]

v(v − 1)
(
v − 1

9

) y = 0. (3.26)

3.5. Heun function product form for G(n, n, n;w)

The Heun differential equations (3.24) and (3.26) are of the Fuchsian type with four regular
singular points at v = 0, 1

9 , 1 and ∞. The Riemann P-symbol (see Ince (1927), p 370)
associated with equation (3.24) is given by

P

 0 1
9 1 ∞

0 0 0 1 − n v

−n 2n 2n 1 − 2n

 (3.27)

while the P-symbol for (3.26) is

P

 0 1
9 1 ∞

0 0 0 1 − n v

−2n n n 1 + n

 . (3.28)

We see directly from these results that the Heun equations have the correct Fuchsian invariant
of 2.

It is clear from the P-symbols that in the neighbourhood of the singularity v = 0 the Heun
equations (3.24) and (3.26) will have series solutions of the type

y = Hj(n, v) ≡
∞∑

m=0

h(j)
m (n)vm (j = 1, 2) (3.29)

respectively, where |v| < 1
9 and
{
h

(j)

0 (n) ≡ 1 : j = 1, 2
}
. We can generate the coefficients{

h(1)
m (n) : m = 1, 2, . . .

}
and
{
h(2)

m (n) : m = 1, 2, . . .
}

using the recursion relations

(m + 1)(m + n + 1)h
(1)
m+1(n) − [(3 + n)(1 − 2n) + 10(1 − n)m + 10m2

]
h(1)

m (n)

+ 9(m − n)(m − 2n)h
(1)
m−1(n) = 0 (3.30)

and

(m + 1)(m + 2n + 1)h
(2)
m+1(n) − [(3 − n)(1 + 2n) + 10(1 + n)m + 10m2

]
h(2)

m (n)

+ 9(m − n)(m + n)h
(2)
m−1(n) = 0 (3.31)
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respectively, where m = 0, 1, 2, . . . , with the initial conditions
{
h

(j)

0 (n) = 1 : j = 1, 2
}

and{
h

(j)

−1(n) = 0 : j = 1, 2
}
. If we adopt the notation used by Snow (1952) then we can write

H1(n, v) and H2(n, v) in the form

H1(n, v) = F
[

1
9 , 1

9 (n + 3)(2n − 1); 1 − n, 1 − 2n, n + 1, 1 − 2n; v
]

(3.32)

and

H2(n, v) = F
[

1
9 , 1

9 (n − 3)(2n + 1); 1 − n, 1 + n, 1 + 2n, 1 − n; v
]

(3.33)

respectively, where F(a, b;α, β, γ, δ; v) denotes a Heun function. It should be noted that
the second independent series solutions of the Heun equations (3.24) and (3.26) exhibit
singularities at v = 0 which involve logarithmic terms.

We now take our solution of L4,n(G) = 0 to be the series expansion (2.6) for the Green
function G(n, n, n;w) in powers of 1/w. For this particular case the solution of L4,n(G) = 0
does not have a logarithmic singularity at w = ∞ and it is clear, therefore, that the relevant
solutions of the Heun equations (3.24) and (3.26) are constant multiples of H1(n, v) and
H2(n, v) respectively. Finally, we combine equations (3.12), (3.19), (3.23), (3.25) and (3.29)
in order to obtain the formula

w3n+1G(n, n, n;w) = Cn

(1 − 9v2)3n+1

[(1 − v)(1 − 9v)]3n
H1(n, v)H2(n, v) (3.34)

where Cn does not depend on the variable v. We can determine Cn by taking the limit v → 0
in (3.34) and comparing the result with the leading-order term in (2.6), with v ∼ (2w)−2.
Hence we obtain the required Heun function product form

w3n+1G(n, n, n;w) = (3n)!

(2nn!)3

(1 − 9v2)3n+1

[(1 − v)(1 − 9v)]3n
H1(n, v)H2(n, v). (3.35)

The general connection between the variables v and w can be established by finding the inverse
of the transformation (3.19), with z = 1/w2. This procedure gives

v(w) = 1

w2

(
1 +

√
1 − 1

w2

)−1 (
1 +

√
1 − 9

w2

)−1

. (3.36)

The final results were checked by using (3.36) to expand the product form (3.35) in powers of
1/w, and agreement was found with the series expansion (2.6).

It is found that the transformation function v(w) maps all the points w ∈ C− into a region
R1 in the v plane which forms part of the circle |v| = 1

3 . This image region is shown in
figure 1. The points on the boundary of R1 are associated with the edges of the cut in the
w plane.

4. Operator identities and recursion relations for {Hj(n, v) : j = 1, 2}
In this section, various operator identities are used to derive recursion relations for the Heun
functions {H1(n, v) : n = 0, 1, 2, . . .} and {H2(n, v) : n = 0, 1, 2, . . .}.

We begin by writing the Heun differential equation (3.24) in the alternative form

Ĥ1,n(y) = 0 (4.1)

where

Ĥ1,n = v(v − 1)(9v − 1)D2
v +
[
27(1 − n)v2 + 10(n − 2)v + (n + 1)

]
Dv

+ (2n − 1)
[
9(n − 1)v + (n + 3)

]
(4.2)
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Figure 1. The region R1 in the v plane.

and Dv = d/dv. Next we consider the operator identity

Ĥ1,n

[
P1,1(n, v)Dv + P1,0(n, v)

] = [Q1,1(n, v)Dv + Q1,0(n, v)
]
Ĥ1,n−1 (4.3)

where

P1,1(n, v) = Q1,1(n, v) = n(v − 1)(9v − 1)(3v + 1)

3(3n − 1)(3n − 2)
(4.4)

P1,0(n, v) = − n

3(3n − 1)(3n − 2)

[
27(n − 2)v2 + 6(11n − 6)v − (29n − 26)

]
(4.5)

Q1,0(n, v) = − n

3(3n − 1)(3n − 2)

[
27(n − 2)v2 + 6(11n + 2)v − (29n − 10)

]
. (4.6)

We can prove this identity by allowing both sides of equation (4.3) to act on an arbitrary
differentiable function f (v).

If we now take the function f (v) to be the Heun function H1(n − 1, v) then it is clear
from (4.3) that [

P1,1(n, v)Dv + P1,0(n, v)
]
H1(n − 1, v) = C1,nH1(n, v) (4.7)

where C1,n does not depend on the variable v. We can determine C1,n by using (3.29), (4.4)
and (4.5) to expand both sides of (4.7) to leading-order in powers of v. In this manner we find
that C1,n = 1. Hence, we obtain the important relation

H1(n, v) = R̂1,nH1(n − 1, v) (4.8)

where the raising operator R̂1,n is defined as

R̂1,n = P1,1(n, v)Dv + P1,0(n, v). (4.9)

If we now make the substitution n → n + 1 in (4.8) and (4.9) it is found that

H1(n + 1, v) = P1,1(n + 1, v)Dv

[
P1,1(n, v)DvH1(n − 1, v)

+ P1,0(n, v)H1(n − 1, v)
]

+ P1,0(n + 1, v)H1(n, v). (4.10)

The evaluation of the right-hand side of (4.10) can be simplified by using the Heun equation
Ĥ1,n−1(y) = 0 to eliminate the second derivative D2

vH1(n − 1, v). We can then remove the
remaining first derivative DvH1(n − 1, v) using (4.8). This procedure yields the required
recursion relation

3(3n + 1)(3n + 2)vH1(n + 1, v) − n(n + 1)
[
(3v − 1)(9v2 − 42v + 1)H1(n, v)

+ (v − 1)2(9v − 1)2H1(n − 1, v)
] = 0 (4.11)

where n = 1, 2, . . . .
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A similar method will now be used to derive a recursion relation for H2(n, v). In the first
stage of the analysis we express the Heun differential equation (3.26) in the form

Ĥ2,n(y) = 0 (4.12)

where

Ĥ2,n = v(v − 1)(9v − 1)D2
v +
[
27v2 − 10(n + 2)v + (2n + 1)

]
Dv

+
[
9(1 − n2)v + (n − 3)(2n + 1)

]
(4.13)

and introduce the further operator identity

Ĥ2,n

[
P2,1(n, v)Dv + P2,0(n, v)

] = [Q2,1(n, v)Dv + Q2,0(n, v)
]
Ĥ2,n−1 (4.14)

where

P2,1(n, v) = Q2,1(n, v) = −n(v − 1)(9v − 1)(3v − 1)

6(3n − 1)(3n − 2)v
(4.15)

P2,0(n, v) = − n

6(3n − 1)(3n − 2)v

[
27nv2 − 6(7n − 2)v − (n − 4)

]
(4.16)

Q2,0(n, v) = − n

6(3n − 1)(3n − 2)v2

[
27(n + 1)v3 − 3(14n + 3)v2 − (n + 3)v + 1

]
. (4.17)

Next we allow both sides of the operator identity (4.14) to act on the Heun function
H2(n − 1, v). This procedure leads to the relation

H2(n, v) = R̂2,nH2(n − 1, v) (4.18)

where the raising operator R̂2,n is given by

R̂2,n = P2,1(n, v)Dv + P2,0(n, v). (4.19)

Finally we make the substitution n → n + 1 in (4.18) and (4.19). In this manner it is found
that

H2(n + 1, v) = P2,1(n + 1, v)Dv

[
P2,1(n, v)DvH2(n − 1, v) + P2,0(n, v)H2(n − 1, v)

]
+ P2,0(n + 1, v)H2(n, v). (4.20)

We simplify the evaluation of the right-hand side of (4.20) by using the Heun equation
Ĥ2,n−1(y) = 0 to eliminate the second derivative D2

vH2(n − 1, v). It is then possible to
remove the remaining first derivative DvH2(n − 1, v) using (4.18). This procedure gives the
second recursion relation

3(3n + 1)(3n + 2)v2H2(n + 1, v) + n(n + 1)
[
(3v + 1)(9v2 − 12v + 1)H2(n, v)

− (v − 1)(9v − 1)H2(n − 1, v)
] = 0 (4.21)

where n = 1, 2, . . . .

We have also derived the further relation

Hj(n, v) = L̂j,nHj (n + 1, v) (4.22)

where j = 1, 2 and {L̂j,n : j = 1, 2} are lowering operators. In particular, we find that

L̂1,n = 1

(n + 1)(v − 1)(9v − 1)

[
v(3v + 1)Dv + (n + 1) − 3(2n + 1)v

]
(4.23)

L̂2,n = 1

2(n + 1)

[
v(1 − 3v)Dv + 2(n + 1) + 3nv

]
. (4.24)

The set of raising and lowering operators {R̂j,n, L̂j,n : n = 0, 1, 2, . . .}, where j = 1, 2, is not
closed under commutation. However, if the Heun functions H1(n, v) and H2(n, v) are scaled
using (6.11) and (6.12), respectively, it can be shown (Miller (1968), p 199) that they form a
realization of the Lie algebra G{1, 0}.
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5. Solutions of the Heun differential equations {Ĥj,n(y) = 0 : j = 1, 2} in terms of
complete elliptic integrals

The main aim in this section is to show how the operator identities and recursion relations
derived in section 4 can be used to express the solutions of the Heun equations (3.24) and
(3.26) in terms of complete elliptic integrals of the first and second kind.

5.1. Formulae for {Hj(n, v) : j = 1, 2}
It has been shown by Joyce (1994, 1998) that G(0, 0, 0;w) can be written in the ξ parametric
form

G(0, 0, 0;w) = 2ξ
(1 + ξ)1/2(1 − 3ξ)1/2

(1 − ξ)5/2(1 + 3ξ)1/2

[
2

π
K(k)

]2

(5.1)

where K(k) denotes the complete elliptic integral of the first kind with a modulus

k = 4ξ 3/2

(1 − ξ)3/2(1 + 3ξ)1/2
. (5.2)

The connection between the parameter ξ and the variable w is given by

ξ(z) = z1/2
(

1 +
√

1 − z
)−1/2(

1 +
√

1 − 9z
)−1/2

(5.3)

with z = 1/w2. If we compare (5.1) and (5.3) with the formulae (3.35) and (3.36), respectively,
then it is seen that

H1(0, v) = H2(0, v) = 1

(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
K(k) (5.4)

where v = ξ 2.
A similar formula for H1(1, v) can be derived by applying the raising operator R̂1,1

to (5.4). Hence we find that

H1(1, v) = 1

v

[
B

(1)
1 (1, v)(1 − ξ)−3/2(1 + 3ξ)−1/2

(
2

π

)
K(k)

+ B
(2)
1 (1, v)(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
E(k)

]
(5.5)

where

B
(1)
1 (1, v) = − 1

8 (1 − v)2(1 − 9v) (5.6)

B
(2)
1 (1, v) = 1

8 (1 + 3v) (5.7)

and E(k) is the complete elliptic integral of the second kind.
It is now possible to use the recursion relation (4.11) to generate formulae for the higher-

order Heun functions. In particular, it is found that

H1(n, v) = 1

vn

[
B

(1)
1 (n, v)(1 − ξ)−3/2(1 + 3ξ)−1/2

(
2

π

)
K(k)

+ B
(2)
1 (n, v)(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
E(k)

]
(5.8)

where
{
B

(j)

1 (n, v) : j = 1, 2
}

satisfy the recursion relation

3(3n + 1)(3n + 2)B
(j)

1 (n + 1, v) − n(n + 1)
[
(3v − 1)(9v2 − 42v + 1)B

(j)

1 (n, v)

+ v(v − 1)2(9v − 1)2B
(j)

1 (n − 1, v)
] = 0 (5.9)
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with n = 1, 2, . . . . The initial conditions for this relation are given for j = 1 and j = 2
by B

(1)
1 (0, v) = 1, (5.6) and B

(2)
1 (0, v) = 0, (5.7), respectively. In appendix A we list the

polynomials
{
B

(j)

1 (n, v) : j = 1, 2
}

for n � 4.
In a similar manner we can use (4.18), (5.4) and (4.21) to express H2(n, v) in terms of

K(k) and E(k). The final result is

H2(n, v) = 1

v2n

[
B

(1)
2 (n, v)(1 − ξ)−3/2(1 + 3ξ)−1/2

(
2

π

)
K(k)

+ B
(2)
2 (n, v)(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
E(k)

]
(5.10)

where
{
B

(j)

2 (n, v) : j = 1, 2
}

satisfy the recursion relation

3(3n + 1)(3n + 2)B
(j)

2 (n + 1, v) + n(n + 1)
[
(3v + 1)(9v2 − 12v + 1)B

(j)

2 (n, v)

− v2(v − 1)(9v − 1)B
(j)

2 (n − 1, v)
]

= 0 (5.11)

with n = 1, 2, . . . . The initial conditions for relation (5.11) are given for j = 1 and j = 2 by

B
(1)
2 (0, v) = 1 (5.12)

B
(1)
2 (1, v) = − 1

16 (1 − v2)(1 − 9v) (5.13)

and

B
(2)
2 (0, v) = 0 (5.14)

B
(2)
2 (1, v) = 1

16 (1 − 3v) (5.15)

respectively. In appendix B we list the polynomials
{
B

(j)

2 (n, v) : j = 1, 2
}

for n � 4.
It is clear from the P-symbols (3.27) and (3.28) that the Heun series (3.29) and their

analytic continuations define single-valued analytic functions {Hj(n, v) : j = 1, 2} in the
whole v plane, provided that a cut is made along the real axis from v = 1

9 to v = +∞. The
elliptic integral formulae (5.8) and (5.10) give representations for these analytic functions
provided that v lies in a certain finite region R2 of the cut plane. This region of validity is
shown in figure 2, with the region R1. The points on the boundary of R2 are associated with
values of k2 = k2(v) which lie in the interval 2 � k2 < ∞.

We see from figure 2 that R1 lies entirely inside the region of validity R2. It follows,
therefore, that the representations (5.8) and (5.10) can be used to analyse the properties of the
product form (3.35) for all w ∈ C−.

5.2. Formulae for independent second solutions of {Ĥj,n(y) = 0 : j = 1, 2}
Our aim now is to construct independent second solutions H̃ 1(n, v) and H̃ 2(n, v) of the
Heun differential equations (3.24) and (3.26), respectively. We begin by noting that
K(k) and the complementary integral K ′(k) are both solutions of the differential equation
(Borwein and Borwein 1987, p 9)

k(1 − k2)
d2y

dk2
+ (1 − 3k2)

dy

dk
− ky = 0. (5.16)

It follows from this result and (5.4) that we can express {H̃ j (0, v) : j = 1, 2} in the form

H̃ 1(0, v) = H̃ 2(0, v) = 1

(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
K ′(k) (5.17)
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Figure 2. The regions R1 and R2 in the cut v plane.

where the modulus k is defined in (5.2). This non-physical second solution exhibits a
logarithmic singularity at v = 0.

Next we apply the raising operators {R̂j,1 : j = 1, 2} to (5.17) and then make use of
the recursion relations (4.11) and (4.21) with H formally replaced by H̃ . In this manner, we
obtain the following particular form for the independent second solution,

H̃ j (n, v) = 1

vjn

[
B

(1)
j (n, v)(1 − ξ)−3/2(1 + 3ξ)−1/2

(
2

π

)
K ′(k)

−B
(2)
j (n, v)(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
Ẽ(k)

]
(5.18)

where j = 1, 2 and

Ẽ(k) ≡ E′(k) − K ′(k). (5.19)

The formula (5.18) gives single-valued analytic second solutions of the Heun equations (3.24)
and (3.26) provided that v lies in a certain finite region of the v plane. It is found that this
region is contained within the region R2 and includes the real interval 0 < v < 1.

5.3. Connection with the algebraic solution G(a)(n, z)

Next we express the general solutions of the Heun equations (3.24) and (3.26) as linear
combinations of the functions H1(n, v), H̃ 1(n, v) and H2(n, v), H̃ 2(n, v) respectively, and
then apply equations (3.23), (3.25) and (3.12). This procedure enables one to show that the
general solution of L4,n(G) = 0 can be written in the form

G ≡ G(n, z) = v(1+3n)/2[(1 − v)(1 − 9v)](1−3n)/2[λ1H1(n, v)H2(n, v)

+ λ2H̃ 1(n, v)H2(n, v) + λ3H1(n, v)H̃ 2(n, v) + λ4H̃ 1(n, v)H̃ 2(n, v)
]

(5.20)

provided n �= 0, where {λi : i = 1, 2, 3, 4} are constants and the connection between the
variables v and z is given by (3.26).

If we use (5.8), (5.10) and (5.18) to evaluate (5.20) for the special case λ1 = λ4 = 0 and
λ2 = −λ3 = 1 we find that all the elliptic integrals can be completely eliminated by making
use of the Legendre relation (Borwein and Borwein 1987, p 24)

K(k)E′(k) + K ′(k)E(k) − K(k)K ′(k) = π

2
. (5.21)
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Hence we obtain the identity

[v(1 − v)(1 − 9v)](1−3n)/2
[
B

(1)
1 (n, v)B

(2)
2 (n, v) − B

(2)
1 (n, v)B

(1)
2 (n, v)

]
= C(a)

n G(a)(n, z) (5.22)

where G(a)(n, z) is the algebraic solution (3.2) and C(a)
n only depends on the variable n. It

can be shown that

C(a)
n = 3

8n

(n!)3

(3n)!
(−2)n−1 (5.23)

with n = 1, 2, . . . . We see that the Legendre relation provides an underlying mechanism for
the existence of the algebraic solution G(a)(n, z).

Finally, we note that the solutions of the Heun differential equations (3.24) and (3.26)
can also be defined for non-integer values of n. For the special case n = N + 1

2 , where
N = 0, 1, 2, . . . it is found that all solutions of these differential equations are algebraic
functions of v.

6. Hypergeometric representations for {Hj(n, v) : j = 1, 2}
In this section, we shall prove that the Heun functions H1(n, v) and H2(n, v) can be expressed
in terms of a single 2F1 hypergeometric function, provided that the variable v lies in a
sufficiently small neighbourhood of the origin v = 0.

We begin the analysis by considering the hypergeometric function

Y ≡ Y(n, x) = 2F1

(
1

3
,

2

3
; n + 1; x

)
. (6.1)

It is known that this function is a solution of the differential equation

9x(1 − x)
d2Y
dx2

+ 9[(n + 1) − 2x]
dY
dx

− 2Y = 0. (6.2)

We now apply the rational transformation

x 
→ x1(v) = 27v(1 − v)2

(1 + 3v)3
(6.3)

to (6.2). In this manner it is found that

v(1 − v)(1 − 9v)(1 + 3v)2 d2Y
dv2

+ (1 + 3v)
[
(n + 1) + (9n − 23)v + 27(n + 1)v2

+ 27(n + 1)v3
]dY

dv
− 6(1 − v)(1 − 9v)Y = 0. (6.4)

Next the further transformation

Y = (1 + 3v)

(1 − v)2n
y (6.5)

is applied to (6.4). Hence we find that y = y(n, v) is a solution of the Heun differential
equation (3.24). It is readily seen from this result that

H1(n, v) = (1 − v)2n

(1 + 3v)
2F1

[
1

3
,

2

3
; n + 1; 27v(1 − v)2

(1 + 3v)3

]
. (6.6)

The formula (6.6) gives a representation for the single-valued analytic function H1(n, v)

provided that v lies in a certain finite region R3 of the cut plane. This region of validity is
shown in figure 3, with the region R1. The points on the boundary of R3 are associated with
values of x = x1(v) which have 1 � x < ∞.
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Figure 3. The regions R1 and R3 in the cut v plane.

From figure 3 we see that the points v in the upper-half plane that are in R1 and outside
R3 form a finite region which we shall denote by R4. There is also a similar complex
conjugate region R∗

4 in the lower-half of the v plane. We can establish 2F1 representations for
H1(n, v) which are valid in R4 and R∗

4 by using a standard formula (Erdélyi et al 1953, p 110,
equation (12)) to construct the analytic continuation of (6.6) across the boundary of the region
R3. The final result is

H1(n, v) = (1 − v)2n

(1 + 3v)
2F1

[
1

3
,

2

3
; n + 1; 27v(1 − v)2

(1 + 3v)3

]
± i

√
3

(1 + 3v)

[
− (1 − 9v)2

27v

]n
2F1

[
1

3
,

2

3
; n + 1; (1 − 9v)2

(1 + 3v)3

]
(6.7)

where the upper and lower signs are valid in R4 and R∗
4, respectively.

It is possible to obtain similar 2F1 results for H2(n, v) by applying the alternative
transformations

x 
→ x2(v) = 27v2(1 − v)

(1 − 3v)3
(6.8)

and

Y = (1 − 3v)

(1 − v)n
y (6.9)

to (6.2). In this case it is found that y = y(n, v) is a solution of the second Heun differential
equation (3.26). It follows, therefore, that H2(n, v) can be written in the form

H2(n, v) = (1 − v)n

(1 − 3v)
2F1

[
1

3
,

2

3
; n + 1; 27v2(1 − v)

(1 − 3v)3

]
. (6.10)

The formula (6.10) gives a representation for the single-valued analytic function H2(n, v)

provided that v lies in a certain semi-infinite region R5 of the cut plane. Fortunately, it is not
necessary to construct the analytic continuation of (6.10) across the boundary of R5 because
the region R1 of physical interest lies entirely inside R5.

The important formulae (6.6) and (6.10) can also be derived by making the substitutions

H1(n, v) = n!(
2
3

)
n

E1(n, v) (6.11)

H2(n, v) = n!(
1
3

)
n

E2(n, v) (6.12)
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in (4.11) and (4.21), respectively. This procedure yields the following simplified Laplace
recursion relations,

27(3n + 1)vE1(n + 1, v) − 3n(3v − 1)(9v2 − 42v + 1)E1(n, v)

− (3n − 1)(v − 1)2(9v − 1)2E1(n − 1, v) = 0 (6.13)

27(3n + 2)v2E2(n + 1, v) + 3n(3v + 1)(9v2 − 12v + 1)E2(n, v)

− (3n − 2)(v − 1)(9v − 1)E2(n − 1, v) = 0 (6.14)

where n = 1, 2, . . . . It is now possible to determine hypergeometric solutions of (6.13) and
(6.14) by applying a standard method (see Milne-Thomson (1981), p 491).

It is interesting to note that we can use (5.4) and (6.6) with v = ξ 2 and n = 0 to derive
the transformation formula

2F1

[
1

3
,

2

3
; 1; 27ξ 2(1 − ξ 2)2

(1 + 3ξ 2)3

]
= (1 + 3ξ 2)

(1 − ξ)3/2(1 + 3ξ)1/2

× 2F1

[
1

2
,

1

2
; 1; 16ξ 3

(1 − ξ)3(1 + 3ξ)

]
. (6.15)

The substitution ξ = p/(2 + p) in (6.15) yields an identity given by Ramanujan (1957). In a
similar manner we can use (5.4) and (6.10) to obtain the further transformation identity

2F1

[
1

3
,

2

3
; 1; 27ξ 4(1 − ξ 2)

(1 − 3ξ 2)3

]
= (1 − 3ξ 2)

(1 − ξ)3/2(1 + 3ξ)1/2

× 2F1

[
1

2
,

1

2
; 1; 16ξ 3

(1 − ξ)3(1 + 3ξ)

]
. (6.16)

7. Exact formulae for the Green function G(n, n, n; w)

Our main purpose in this section is to prove that G(n, n, n;w) can be written in terms of
a product of two linear forms in K(k) and E(k) whose coefficients are polynomials in the
parameter ξ . It will also be shown that G(n, n, n;w) is expressible in terms of a product of
two 2F1 hypergeometric functions.

7.1. Product form for G(n, n, n;w) in terms of complete elliptic integrals

We begin by applying (5.8) and (5.10) to the Heun function product form (3.35). In this
manner we obtain the ξ parametric formula

G(n, n, n;w) ≡ (3/w)3nwG(n, n, n;w) = 63n (3n)!

(n!)3

(1 − 9ξ 4)1−3n

(1 − ξ)3(1 + 3ξ)

(
2

π

)2

×
2∏

i=1

[
B

(1)
i (n, v)K(k) + (1 − ξ)3(1 + 3ξ)B

(2)
i (n, v)E(k)

]
(7.1)

where

k2(ξ) = 16ξ 3

(1 − ξ)3(1 + 3ξ)
(7.2)

ξ(w) = 1

w

(
1 +

√
1 − 1

w2

)−1/2 (
1 +

√
1 − 9

w2

)−1/2

(7.3)
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and v = ξ 2. The polynomials
{
B

(j)

1 (n, v) : j = 1, 2
}

and
{
B

(j)

2 (n, v) : j = 1, 2
}

in (7.1) can
be determined using the recursion relations (5.9) and (5.11), respectively.

Explicit product forms of the type (7.1) were first obtained by Joyce (2002) for the special
cases n = 0, 1, 2, 3, 4 by following methods developed by Morita (1975). We have derived
these particular formulae by applying the polynomial expressions in appendices A and B to the
general product form (7.1). In all cases agreement was found with the work of Joyce (2002).
Further checks have also been carried out by expanding (7.1) in powers of 1/w for various
integer values of n � 0 and comparing the results with the series (2.6). It should be noted
that (7.1) enables one to calculate extremely accurate values for G(n, n, n;w) at any point
w = w1 + iw2 in a complex (w1, w2) plane which is cut along the real axis from w1 = −3 to
w1 = +3. For example, we find that

G(1000, 1000, 1000; 3) = 0.000 091 888 144 132 067 310 942 752 976 327 816 092

222 748 713 302 635 909 147 604 173 686 682 252 148

435 124 320 431 845 557 661 224 240 623 119 351 . . . . (7.4)

If we make the substitution w = w1 − iε in (7.1), where w1 is real and ε > 0, and then
apply the definition (1.3) it is found that the right-hand side of (7.1) can be used to calculate
(3/w1)

3nw1G
−(n, n, n;w1) for 0 < w1 < 3, provided that ξ = ξ(w) is replaced by

ξ̃ ≡ ξ̃ (w1) = lim
ε→0+

ξ(w1 − iε)

= 1

w1

(
1 − i

√
1

w2
1

− 1

)−1/2 (
1 − i

√
9

w2
1

− 1

)−1/2

. (7.5)

For example, when n = 10 and w1 = 2 the modified formula gives

G−(10, 10, 10; 2) = GR(10, 10, 10; 2) + iGI(10, 10, 10; 2) (7.6)

where

GR(10, 10, 10; 2) = 0.013 712 569 365 260 541 486 044 864 334 171 807 911 990

578 266 795 397 937 108 813 161 273 018 956 326 842 010

597 072 115 429 438 806 103 356 325 225 528 990 206 . . . (7.7)

GI(10, 10, 10; 2) = 0.001 521 292 642 094 924 949 875 044 972 204 457 614 030

831 146 470 369 909 807 579 694 240 416 378 427 589 560

420 719 210 783 270 381 327 209 309 277 719 264 896 . . . . (7.8)

It would be very difficult to obtain such highly accurate values for GR(10, 10, 10; 2) and
GI(10, 10, 10; 2) using the integral representations (1.7) and (1.8), respectively, because these
integrals involve oscillatory integrands which have slowly decreasing amplitudes as t → ∞.

7.2. Hypergeometric product forms for G(n, n, n;w)

We now substitute equations (6.6) and (6.10) in (3.35) and then use relation (3.36) to express
the final result in terms of the variable w. Hence, we obtain the alternative product form

wG(n, n, n;w) = (3n)!

(3nn!)3

[
w

3

(
1 −
√

1 − 9

w2

)]3n

2F1

(
1

3
,

2

3
; n + 1; η+

)
× 2F1

(
1

3
,

2

3
; n + 1; η−

)
(7.9)
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Figure 4. The regions R±
6 and R7 in the w plane.

where

η± ≡ η±(w) = 1

8w2

[
4w2 + (9 − 4w2)

√
1 − 9

w2
± 27

√
1 − 1

w2

]
. (7.10)

The formula (7.9) will remain valid for varying values of w in the neighbourhood of w = ∞,
provided that the argument function η+(w) does not take real values in the interval (1, +∞).

In order to establish the precise region of validity for (7.9) we first determine the set of
points S in the w plane which give real values of η+(w) ∈ ( 12 + 1

2

√
5, +∞). It is found that

the set S forms two closed paths which divide the w plane into three regions R+
6,R

−
6 and R7,

as shown in figure 4. From these results it follows that (7.9) is valid for all w ∈ C− which are
in the outer region R7.

When w is in one of the inner regions R±
6 it is necessary to modify the derivation of

the 2F1 product form by replacing (6.6) with the analytic continuation formula (6.7). This
procedure yields the alternative representation

wG(n, n, n;w) = (3n)!

(3nn!)3

{[
w

3

(
1 −
√

1 − 9

w2

)]3n

2F1

(
1

3
,

2

3
; n + 1; η+

)

± i
√

3(−1)n

[
w

(
1 −
√

1 − 1

w2

)]n

2F1

(
1

3
,

2

3
; n + 1; 1 − η+

)}

× 2F1

(
1

3
,

2

3
; n + 1; η−

)
(7.11)

where the variable w lies in the region R+
6 ∪ R−

6 with the real interval
[− 3

2 , 3
2

]
deleted,

and η± = η±(w) is given by (7.10). The upper positive sign in (7.11) is valid when
{Re(w) > 0, Im(w) < 0} and {Re(w) < 0, Im(w) > 0}, while the lower negative sign is valid
when {Re(w) > 0, Im(w) > 0} and {Re(w) < 0, Im(w) < 0}.

Finally, we make the substitution w = w1 − iε in (7.9), where w1 is real and ε > 0, and
then apply the definition (1.3). This procedure gives

w1G
−(n, n, n;w1) = (3n)!

(3nn!)3

[
w1

3

(
1 + i

√
9

w2
1

− 1

)]3n

2F1

(
1

3
,

2

3
; n + 1; η̃+

)
× 2F1

(
1

3
,

2

3
; n + 1; η̃−

)
(7.12)
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where

η̃± ≡ η̃±(w1) = lim
ε→0+

η±(w1 − iε)

= 1

8w2
1

[
4w2

1 − i
(
9 − 4w2

1

)√ 9

w2
1

− 1 ∓ 27i

√
1

w2
1

− 1

]
(7.13)

provided that 3
2 < w1 � 3. In a similar manner we can use (7.11) to obtain the formula

w1G
−(n, n, n;w1) = (3n)!

(3nn!)3

{[
w1

3

(
1 + i

√
9

w2
1

− 1

)]3n

2F1

(
1

3
,

2

3
; n + 1; η̃+

)

+ i
√

3(−1)n

[
w1

(
1 + i

√
1

w2
1

− 1

)]n

2F1

(
1

3
,

2

3
; n + 1; 1 − η̃+

)}

× 2F1

(
1

3
,

2

3
; n + 1; η̃−

)
. (7.14)

This second result is valid when 0 < w1 � 3
2 .

7.3. Special cases G(0, 0, 0;w),G±(n, n, n; 0) and G(n, n, n; 3)

When n = 0 we can achieve a considerable simplification of (7.9) by first using (6.15) and
(6.16) to derive the transformation formula

2F1

[
1

3
,

2

3
; 1; 27v(1 − v)2

(1 + 3v)3

]
=
(

1 + 3v

1 − 3v

)
2F1

[
1

3
,

2

3
; 1; 27v2(1 − v)

(1 − 3v)3

]
(7.15)

where v = ξ 2. If relation (3.36) is applied to (7.15) we find that

2F1

(
1

3
,

2

3
; 1; η+

)
= 1

2

(
3

√
1 − 1

w2
−
√

1 − 9

w2

)
2F1

(
1

3
,

2

3
; 1; η−

)
(7.16)

where η± = η±(w) are defined in (7.10). This formula is valid provided that w lies in the
region R7 of the cut w plane. From (7.9) and (7.16) we see that

G(0, 0, 0;w) = 1

2w

(
3

√
1 − 1

w2
−
√

1 − 9

w2

)[
2F1

(
1

3
,

2

3
; 1; η−

)]2

. (7.17)

It should be stressed that the final result (7.17) is valid for all w ∈ C−.
Next we make the substitution w = ±iε, where ε > 0, in the formula (7.9) and then take

the limit ε → 0+. This procedure gives

G±(n, n, n; 0) = (∓i)3n+1 (3n)!

(3nn!)3 2F1

(
1

3
,

2

3
; n + 1; 1

2

)
× lim

ε→0+

(
1

ε

)
2F1

(
1

3
,

2

3
; n + 1;− 27

4ε3

)
. (7.18)

We now simplify (7.18) using standard 2F1 formulae (see Erdélyi et al (1953)). In this manner
it is found that

G±(n, n, n; 0) = (∓i)3n+1

22/3�
(

5
6

)√
3π

�
(

n
2 + 1

6

)
�
(

n
2 + 5

6

) (7.19)
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where �(z) denotes the gamma function and n = 0, 1, 2, . . . . If this result is compared with
(1.6), with � = m = n and w1 = 0, we obtain the integral formula∫ ∞

0
J 3

n (t) dt = 1

22/3�
(

5
6

)√
3π

�
(

n
2 + 1

6

)
�
(

n
2 + 5

6

) . (7.20)

It appears that (7.20) is also valid for non-integer and complex values of n.
When w = 3 we find that the general product formula (7.9) reduces to

G(n, n, n; 3) = (3n)!

3(3nn!)3 2F1

[
1

3
,

2

3
; n + 1; 1

4

(
2 −

√
2
)]

× 2F1

[
1

3
,

2

3
; n + 1; 1

4

(
2 +

√
2
)]

. (7.21)

For the special case n = 0 we can also use (7.17) to obtain the reduced form

G(0, 0, 0; 3) =
√

2

3

{
2F1

[
1

3
,

2

3
; 1; 1

4

(
2 −

√
2
)]}2

. (7.22)

8. Asymptotic behaviour of G(n, n, n; w) as n → ∞
A detailed investigation of the asymptotic form of the general lattice Green function
G(�,m, n;w) as (�2 + m2 + n2)1/2 → ∞ was carried out by Katsura and Inawashiro (1973)
using stationary phase and saddle-point methods. Unfortunately, the work of these authors
involved complicated calculations and the asymptotic representations for G(�,m, n;w) were
only given to leading order.

In this section, we shall show that the 2F1 product forms obtained in section 7 can be
used to derive uniform asymptotic expansions for G(n, n, n;w), as n → ∞, in a very simple
manner.

8.1. General asymptotic representations

We begin by considering the standard asymptotic formula (Luke 1969, p 235)

2F1

(
1

3
,

2

3
; n + 1; η

)
∼ �M(n, η) (8.1)

as n → ∞, where

�M(n, η) ≡
M∑

m=0

(
1
3

)
m

(
2
3

)
m

(n + 1)mm!
ηm (8.2)

and M = 0, 1, 2, . . . . Next we apply (8.1) to the product form (7.9). This procedure yields
the asymptotic representation

wG(n, n, n;w) ∼ (3n)!

(3nn!)3

[
w

3

(
1 −
√

1 − 9

w2

)]3n

�M (n, η+)�M (n, η−) (8.3)

as n → ∞, where M is fixed and η± = η±(w) are defined in (7.10). We expect (8.3) to be
valid provided that w lies in the region R7 of the cut w plane.

A uniform asymptotic expansion for G(n, n, n;w) can now be derived by expanding the
factorial multiplier and the � functions in (8.3) in powers of 1/n. In particular, we find that

G(n, n, n;w) ∼
√

3

2πwn

[
w

3

(
1 −
√

1 − 9

w2

)]3n ∞∑
m=0

b(1)
m (w)

nm
(8.4)



Exact product forms for the simple cubic lattice Green function: I 3667

as n → ∞, where b
(1)
0 (w) = 1,

b
(1)
1 (w) = 1

18w2
(9 − 4w2)

√
1 − 9

w2
(8.5)

b
(1)
2 (w) = − 1

324w6
(3645 − 3645w2 + 594w4 − 8w6) (8.6)

b
(1)
3 (w) = − 1

8748w8
(51 030 − 51 030w2 + 4185w4 + 14w6)(9 − 4w2)

√
1 − 9

w2
(8.7)

and w ∈ R7.
In a similar manner we can also apply (8.1) to the product form (7.11). Hence, we obtain

wG(n, n, n;w) ∼ (3n)!

(3nn!)3
�M (n, η−)

{[
w

3

(
1 −
√

1 − 9

w2

)]3n

�M (n, η+)

± i
√

3(−1)n

[
w

(
1 −
√

1 − 1

w2

)]n

�M (n, 1 − η+)

}
(8.8)

as n → ∞, with M fixed. We expect (8.8) to be valid provided that w lies in the region
R+

6 ∪R−
6 with the real interval

[− 3
2 , 3

2

]
deleted. If the factorial multiplier and the � functions

in (8.8) are expanded in powers of 1/n it is found that

G(n, n, n;w) ∼
√

3

2πwn

{[
w

3

(
1 −
√

1 − 9

w2

)]3n ∞∑
m=0

b(1)
m (w)

nm

± i
√

3(−1)n

[
w

(
1 −
√

1 − 1

w2

)]n ∞∑
m=0

b(2)
m (w)

nm

}
(8.9)

as n → ∞, where b
(2)
0 (w) = 1,

b
(2)
1 (w) = − 3

2w2

√
1 − 1

w2
(8.10)

b
(2)
2 (w) = − 3

4w6
(15 − 15w2 + 2w4) (8.11)

b
(2)
3 (w) = 3

4w8
(210 − 210w2 + 45w4 − 2w6)

√
1 − 1

w2
(8.12)

and w ∈ R+
6 ∪ R−

6 with the real interval
[− 3

2 , 3
2

]
deleted. The role of the ± signs

in equation (8.9) is explained in section 7.2. It should be noted that the coefficients
{b(1)

m (w), b(2)
m (w) : m = 1, 2, . . .} in the expansions (8.4) and (8.9) all become infinite as

w → 0. The reasons for this breakdown at w = 0 will be discussed in section 8.3.
Next we let w = w1 − iε in (8.4), where ε > 0, and then apply the definition (1.3). In

this manner, we find that

G−(n, n, n;w1) ∼
√

3

2πw1n

[
w1

3

(
1 + i

√
9

w2
1

− 1

)]3n ∞∑
m=0

b̃(1)
m (w1)

nm
(8.13)

as n → ∞, where 3
2 < w1 � 3 and b̃

(1)
0 (w1) = 1. Formulae for

{̃
b(1)

m (w1) : m = 1, 2, 3
}

can
be readily obtained by making the formal replacements w 
→ w1 and
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1 − 9

w2

→ −i

√
9

w2
1

− 1 (8.14)

in the right-hand sides of equations (8.5)–(8.7), respectively. When 0 < w1 � 3
2 we can use

(8.9) to derive the alternative asymptotic expansion

G−(n, n, n;w1) ∼
√

3

2πw1n

{[
w1

3

(
1 + i

√
9

w2
1

− 1

)]3n ∞∑
m=0

b̃(1)
m (w1)

nm

+ i
√

3(−1)n

[
w1

(
1 + i

√
1

w2
1

− 1

)]n ∞∑
m=0

b̃(2)
m (w1)

nm

}
(8.15)

as n → ∞, where b̃
(2)
0 (w1) = 1. Formulae for

{̃
b(2)

m (w1) : m = 1, 2, 3
}

can be written down
by making the formal replacements w 
→ w1 and√

1 − 1

w2

→ −i

√
1

w2
1

− 1 (8.16)

in the right-hand sides of equations (8.10)–(8.12), respectively. It has been verified that the
dominant leading-order terms in (8.13) and (8.15) are consistent with the work of Katsura and
Inawashiro (1973).

8.2. Asymptotic expansions for G±(n, n, n; 0) and G(n, n, n; 3)

We begin by considering the standard expansion (Luke 1969, p 34)

�(z + a)

�(z + b)
∼ (z + a − ρ)a−b

∞∑
m=0

(b − a)2mB
(2ρ)

2m (ρ)

(2m)!(z + a − ρ)2m
(8.17)

as z → ∞, where B
(2ρ)

2m (ρ) is a generalized Bernoulli polynomial and

ρ = 1
2 (1 + a − b). (8.18)

The application of (8.17) to the formula (7.19) gives the required asymptotic expansion

G±(n, n, n; 0) ∼ (∓i)3n+1

�
(

5
6

)√
3π

1

n2/3

∞∑
m=0

(
2
3

)
2m

B
(1/3)

2m

(
1
6

)
(2m)!
(

n
2

)2m
(8.19)

as n → ∞. From this result it follows that

G±(n, n, n; 0) ∼ (∓i)3n+1

�
(

5
6

)√
3π

1

n2/3

(
1 − 5

81n2
+

242

6561n4
− 114 070

1594 323n6

+
38 532 659

129 140 163n8
− 22 574 645 015

10 460 353 203n10
+ . . .

)
(8.20)

as n → ∞. A striking feature of this expansion is that the amplitude factor does not obey the
expected 1/n decay law! In some respects the point w = 0 is similar to a critical point in the
theory of phase transitions.

Next the behaviour of G(n, n, n; 3) as n → ∞ is determined by making the substitution
w = 3 in (8.3). Hence, we obtain

G(n, n, n; 3) ∼ (3n)!

3(3nn!)3
�M

[
n,

1

4

(
2 −

√
2
)]

�M

[
n,

1

4

(
2 +

√
2
)]

(8.21)
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as n → ∞. If the factorial factor and the � functions in (8.21) are expanded in powers of 1/n

it is found that

G(n, n, n; 3) ∼ 1

2π
√

3n

(
1 − 1

18n2
− 1

108n4
+

163

2 916n6
− 12 797

104 976n8
− 73 589

209 952n10

+
50020 687

5 668 704n12
− 1861 873 501

25 509 168n14
− 619 957 580 233

1224 440 064n16
+ · · ·
)

(8.22)

as n → ∞.
The asymptotic behaviour of G(�,m, n; 3) as R = (�2 + m2 + n2)1/2 → ∞ was first

determined by Duffin (1953) using completely different methods. In particular, it was proved
that

G(�,m, n; 3) ∼ 1

2πR

{
1 +

1

8R2

[
−3 +

5(�4 + m4 + n4)

R4

]
+ O

(
1

R4

)}
(8.23)

as R → ∞. When � = m = n this result is in agreement with the first two terms in the
expansion (8.22). We have also used the expansion (8.22) to calculate an approximate value
for G(n, n, n; 3) when n = 1000. It is found from (7.4) that this asymptotic value has an error
of 3.2927 . . . × 10−54.

8.3. Multiple turning points

The main aim in this final subsection is to investigate why the asymptotic expansions (8.4)
and (8.9) break down as w → 0. We begin by applying the transformation

y = v−(n+1)/2(1 − v)(2n−1)/2(1 − 9v)(2n−1)/2Y (8.24)

to the Heun equation (3.24), where Y is a new dependent variable. This procedure reduces
(3.24) to the normal form

d2Y

dv2
= [n2f (v) + g(v)]Y (8.25)

where

f (v) = (1 + 3v)4

[2v(1 − v)(1 − 9v)]2
(8.26)

g(v) = − (1 − 12v + 102v2 − 108v3 + 81v4)

[2v(1 − v)(1 − 9v)]2
. (8.27)

It is seen that the differential equation (8.25) has a turning point of multiplicity 4 (Olver
1977) at v = − 1

3 . We readily find from (3.36) that

lim
w→0

v(w) = − 1
3 . (8.28)

It follows, therefore, that the expansions (8.4) and (8.9) break down as w → 0 because the
Heun equation (3.24) is associated with a multiple turning point at v = − 1

3 . Asymptotic
solutions of (8.25) which are valid in the immediate neighbourhood of v = − 1

3 can be
constructed by following the sophisticated methods developed by Olver (1977, 1978). It is
found that the leading-order terms in these solutions are expressible in terms of modified
Bessel functions of order 1

6 .
In a similar manner it can be shown that the second Heun equation (3.26) also has a normal

form of the type (8.25) with a turning point of multiplicity 4 at the point v = 1
3 . However, this

turning point does not affect the asymptotic behaviour of G(n, n, n;w) because the value of
the function v(w) is not equal to 1

3 for any w ∈ C−.
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Appendix A. Polynomials
{
B

(j)
1 (n, v) : j = 1, 2

}
for n � 4

B
(1)
1 (0, v) = 1

B
(1)
1 (1, v) = −1

8
(1 − v)2(1 − 9v)

B
(1)
1 (2, v) = 1

240
(1 − v)3(1 − 9v)(1 − 36v + 27v2)

B
(1)
1 (3, v) = − 1

6720
(1 − v)3(1 − 9v)(1 − 51v + 1212v2 − 3132v3 + 2187v4 − 729v5)

B
(1)
1 (4, v) = 1

184 800
(1 − v)3(1 − 9v)(1 − 68v + 2074v2 − 40 364v3

+ 169 020v4 − 281 772v5 + 194 886v6 − 96 228v7 + 19 683v8)

B
(2)
1 (0, v) = 0

B
(2)
1 (1, v) = 1

8
(1 + 3v)

B
(2)
1 (2, v) = − 1

240
(1 − 9v2)(1 − 42v + 9v2)

B
(2)
1 (3, v) = 1

6720
(1 + 3v)(1 − 60v + 1695v2 − 8664v3 + 15 255v4 − 4860v5 + 729v6)

B
(2)
1 (4, v) = − 1

184 800
(1 − 9v2)(1 − 42v + 9v2)(1 − 32v + 1135v2

− 5360v3 + 10 215v4 − 2592v5 + 729v6)

Appendix B. Polynomials
{
B

(j)
2 (n, v) : j = 1, 2

}
for n � 4

B
(1)
2 (0, v) = 1

B
(1)
2 (1, v) = − 1

16
(1 − v2)(1 − 9v)

B
(1)
2 (2, v) = 1

480
(1 − v)2(1 − 9v)(1 − 7v − 27v2 − 27v3)

B
(1)
2 (3, v) = − 1

13 440
(1 − v)3(1 − 9v)(1 − 15v + 24v2 + 216v3 + 729v4 + 729v5)

B
(1)
2 (4, v) = 1

369 600
(1 − v)3(1 − 9v)(1 − 24v + 160v2 − 16v3

− 1260v4 − 4968v5 − 13 608v6 + 19 683v8)

B
(2)
2 (0, v) = 0

B
(2)
2 (1, v) = 1

16
(1 − 3v)

B
(2)
2 (2, v) = − 1

480
(1 − 9v2)(1 − 12v + 9v2)

B
(2)
2 (3, v) = 1

13 440
(1 − 3v)(1 − 18v + 57v2 + 240v3 + 513v4 − 1458v5 + 729v6)

B
(2)
2 (4, v) = − 1

369 600
(1 − 9v2)(1 − 12v + 9v2)(1 − 18v + 85v2

− 40v3 + 765v4 − 1458v5 + 729v6).
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